martes, 9 de junio de 2009

Calculo Integral y Diferencial

Calculo Integral

Introduccion
COTIDIANAMENTE NOS ENCONTRAMOS QUE CADA INDIVIDUO LE CORRESPONDE UNA FECHA DE NACIMIENTO,ES DECIR QUE CADA COSA TIENE QUE CUMPLIR UN OBJETIVO

El cálculo integral se basa en el proceso inverso de la derivación, llamado integración. Dada una función f, se busca otra función F tal que su derivada es F′ = f; F es la integral, primitiva o antiderivada de f, lo que se escribe F(x) = ∫f(x)dx o simplemente F = ∫f dx (esta notación se explica más adelante). Las tablas de derivadas se pueden utilizar para la integración: como la derivada de x2 es 2x, la integral de 2x es x2. Si F es la integral de f, la forma más general de la integral de f es F + c, en donde c es una constante cualquiera llamada constante de integración; esto es debido a que la derivada de una constante es 0 por lo que (F + c)′ = F′ + c′ = f + 0 = f. Por ejemplo, ∫2xdx = x2 + c.
Las reglas básicas de integración de funciones compuestas son similares a las de la diferenciación. La integral de la suma (o diferencia) es igual a la suma (o diferencia) de sus integrales, y lo mismo ocurre con la multiplicación por una constante. Así, la integral de x = ½·2x es ½x2, y de forma similar ∫xm dx = xm+1/(m + 1) para cualquier m ≠ -1 (no se incluye el caso de m = -1 para evitar la división por 0; el logaritmo neperiano lnx es la integral de x-1 = 1/x para cualquier x ≠ 0). La integración suele ser más difícil que la diferenciación, pero muchas de las funciones más corrientes se pueden integrar utilizando éstas y otras reglas (ver la tabla).

Una aplicación bien conocida de la integración es el cálculo de áreas. Sea A el área de la región delimitada por la curva de una función y = f(x) y por el eje x, para a ≤ x ≤ b. Para simplificar, se asume que f(x) ≥ 0 entre a y b. Para cada x ≥ a, sea L(x) el área de la región a la izquierda de la x, así es que hay que hallar A = L(b). Primero se deriva L(x). Si h es una pequeña variación en la x, la región por debajo de la curva entre x y x + h es aproximadamente un rectángulo de altura f(x) y anchura h (véase figura 3); el correspondiente incremento k = L(x + h) - L(x) es por tanto, aproximadamente, f(x)h, por lo que k/h es, aproximadamente, f(x). Cuando h → 0 estas aproximaciones tienden hacia los valores exactos, así es que k/h → f(x) y por tanto L′(x) = f(x), es decir, L es la integral de f.

Si se conoce una integral F de f entonces L = F + c para cierta constante c. Se sabe que L(a) = 0 (pues el área a la izquierda de la x es cero si x = a), con lo que c = -F(a) y por tanto L(x) = F(x) - F(a) para todas las x ≥ a. El área buscada, A = L(b) = F(b) - F(a), se escribe
Éste es el teorema fundamental del cálculo, que se cumple siempre que f sea continua entre a y b, y se tenga en cuenta que el área de las regiones por debajo del eje x es negativa, pues f(x) <>

El área es una integral definida de f que es un número, mientras que la integral indefinida ∫f(x)dx es una función F(x) (en realidad, una familia de funciones F(x) + c). El símbolo ∫ (una S del siglo XVII) representa la suma de las áreas f(x)dx de un número infinito de rectángulos de altura f(x) y anchura infinitesimal dx; o mejor dicho, el límite de la suma de un número finito de rectángulos cuando sus anchuras tienden hacia 0.
La derivada dy/dx = f′(x) de una función y = f(x) puede ser diferenciada a su vez para obtener la segunda derivada, que se denota d2y/dx2, f′′(x) o D2f. Si por ejemplo x es el tiempo e y es la distancia recorrida, entonces dy/dx es la velocidad v, y d2y/dx2 = dv/dx es el incremento en la velocidad, es decir, la aceleración. Según la segunda ley del movimiento del Newton, un cuerpo de masa constante m bajo la acción de una fuerza F adquiere una aceleración a tal que F = ma. Por ejemplo, si el cuerpo está bajo la influencia de un campo gravitatorio F = mg (donde g es la magnitud del campo), y entonces ma = F = mg por lo que a = g, y por tanto dv/dx = g. Al integrar, se tiene que v = gx + c, en donde c es una constante; sustituyendo x = 0 se ve que c es la velocidad inicial. Integrando dy/dx = v = gx + c, se tiene que y = ½gx2 + cx + b en donde b es otra constante; sustituyendo de nuevo x = 0 se tiene que b es el valor inicial de la y Las derivadas de orden superior f(n)(x) = dny/dxn = Dnf de f(x) se calculan diferenciando n veces sucesivamente. El teorema de Taylor muestra que f(x) se puede aproximar como una serie de potencias f(x) = a0 + a1x + a2x2 + ... + anxn + ..., donde los coeficientes a0,a1, ... son constantes tales que an = f(n)(0)/n! (en donde 0!=1 y n!= 1 × 2 × 3 × ... × n para cualquier n ≥
Calculo Diferencial

El cálculo diferencial estudia los incrementos en las variables. Sean x e y dos variables relacionadas por la ecuación y = f(x), en donde la función f expresa la dependencia del valor de y con los valores de x. Por ejemplo, x puede ser tiempo e y la distancia recorrida por un objeto en movimiento en el tiempo x. Un pequeño incremento h en la x, de un valor x0 a x0 + h, produce un incremento k en la y que pasa de y0 = f(x0) a y0 + k = f(x0 + h), por lo que k = f(x0 + h) - f(x0). El cociente k/h representa el incremento medio de la y cuando la x varía de x0 a x0 + h. La gráfica de la función y = f(x) es una curva en el plano xy y k/h es la pendiente de la recta AB entre los puntos A = (x0,y0) y B = (x0 + h, y0 + k) en esta curva; esto se muestra en la figura 1, en donde h = AC y k = CB, así es que k/h es la tangente del ángulo BAC.

Si h tiende hacia 0, para un x0 fijo, entonces k/h se aproxima al cambio instantáneo de la y en x0; geométricamente, B se acerca a A a lo largo de la curva y = f(x), y la recta AB tiende hacia la tangente a la curva, AT, en el punto A. Por esto, k/h tiende hacia la pendiente de la tangente (y por tanto de la curva) en A. Así, se define la derivada f′(x0) de la función y = f(x) en x0 como el límite que toma k/h cuando h tiende hacia cero, lo que se escribe:

Este valor representa la magnitud de la variación de y y la pendiente de la curva en A. Cuando, por ejemplo, x es el tiempo e y es la distancia, la derivada representa la velocidad instantánea. Valores positivos, negativos y nulos de f′(x0) indican que f(x) crece, decrece o es estacionaria respectivamente en x0. La derivada de una función es a su vez otra función f′(x) de x, que a veces se escribe como dy/dx, df/dx o Df. Por ejemplo, si y = f(x) = x2 (parábola), entonces
por lo que k/h = 2x0 + h, que tiende hacia 2x0 cuando h tiende hacia 0. La pendiente de la curva cuando x = x0 es por tanto 2x0, y la derivada de f(x) = x2 es f′(x) = 2x. De manera similar, la derivada de xm es mxm-1 para una m constante. Las derivadas de las funciones más corrientes son bien conocidas (véase la tabla adjunta con algunos ejemplos).
Para calcular la derivada de una función, hay que tener en cuenta unos cuantos detalles: primero, se debe tomar una h muy pequeña (positiva o negativa), pero siempre distinta de cero. Segundo, no toda función f tiene una derivada en todas las x0, pues k/h puede no tener un límite cuando h → 0; por ejemplo, f(x) = x no tiene derivada en x0 = 0, pues k/h es 1 o -1 según que h > 0 o h < a =" (0,0).">

Diferenciación es el proceso de calcular derivadas. Si una función f se forma al combinar dos funciones u y v, su derivada f′ se puede obtener a partir de u, v y sus respectivas derivadas utilizando reglas sencillas. Por ejemplo, la derivada de la suma es la suma de las derivadas, es decir, si f = u + v (lo que significa que f(x) = u(x) + v(x) para todas las x) entonces f′ = u′ + v′. Una regla similar se aplica para la diferencia: (u - v)′ = u′ - v′. Si una función se multiplica por una constante, su derivada queda multiplicada por dicha constante, es decir, (cu)′ = cu′ para cualquier constante c. Las reglas para productos y cocientes son más complicadas: si f = uv entonces f′ = uv′ + u′v, y si f = u/v entonces f′ = (u′v-uv′)/v2 siempre que v(x) ≠ 0. Utilizando estas reglas se pueden derivar funciones complicadas; por ejemplo, las derivadas de x2 y x5 son 2x y 5x4, por lo que la derivada de la función 3x2 - 4x5 es (3x2 - 4x5)′ = (3x2)′ - (4x5)′ = 3·(x2)′ - 4·(x5)′ = 3·(2x) - 4·(5 x4) = 6x - 20x4.

En general, la derivada de un polinomio cualquiera f(x) = a0 + a1x + ... + anxn es f′(x) = a1 + 2a2x + ... + nanxn-1; como caso particular, la derivada de una función constante es 0. Si y = u(z) y z = v(x), de manera que y es una función de z y z es una función de x, entonces y = u(v(x)), con lo que y es función de x, que se escribe y = f(x) donde f es la composición de u y v; la regla de la cadena establece que dy/dx = (dy/dz)·(dz/dx), o lo que es lo mismo, f′(x) = u′(v(x))·v′(x). Por ejemplo, si y = ez en donde e = 2,718... es la constante de la exponenciación, y z = ax donde a es una constante cualquiera, entonces y = eax; según la tabla, dy/dz = ez y dz/dx = a, por lo que dy/dx = aeax.

Muchos problemas se pueden formular y resolver utilizando las derivadas. Por ejemplo, sea y la cantidad de material radiactivo en una muestra dada en el instante x. Según la teoría y la experiencia, la cantidad de sustancia radiactiva en la muestra se reduce a una velocidad proporcional a la cantidad restante, es decir, dy/dx = ay con una cierta constante negativa a. Para hallar y en función de x, hay que encontrar una función y = f(x) tal que dy/dx = ay para cualquier x. La forma general de esta función es y = ceax en donde c es una constante. Como e0 = 1, entonces y = c para x = 0, así es que c es la cantidad inicial (tiempo x = 0) de material en la muestra. Como a<0, y =" ceax,">0). Esto es un crecimiento exponencial que se muestra en la figura 2b y que se pone de manifiesto en explosiones nucleares. También ocurre en comunidades animales donde la tasa de crecimiento es proporcional a la población.
GRACIAS POR SUA TENCION Y ESPERO SEA DETODO SU AGRADO SASTIFACTORIO PARA EL AREA DE MATEMATICAS.
ATENTAMENTE:MARIA DEL ROSARIO CAMPOS DOMINGUEZ
GRUPO: 604

Calculo Integral y Diferencial

Calculo Diferencial

INTRODUCCION



En nuestra vida diaria nos encontramos, con la noción de correspondencia. Por ejemplo, a cada persona le corresponde una fecha de nacimiento, a cada libro le corresponde un número de páginas, a cada objeto le corresponde un peso, a cada rectángulo le corresponde un área, a cada número no negativo le corresponde su raíz cuadrada, etc.

DERIVADA


La derivada de una función en un punto representa el valor de la pendiente de la recta tangente en dicho punto. La pendiente está dada por la tangente del ángulo que forma la recta tangente a la curva (función) con el eje de las abscisas, en ese punto. La cartesiano de dos dimensiones. Por ejemplo si tomamos la velocidad de algo, su coeficiente es la aceleración, la cual mide cuánto cambia la velocidad en un tiempo dado. derivada de una función mide el coeficiente de variación de dicha función. Es decir, provee una formulación matemática de la noción del coeficiente de cambio. El coeficiente de cambio indica lo rápido que crece (o decrece) una función en un punto (razón de cambio promedio) respecto del eje de un plano


En cada uno de los ejemplos anteriores hay dos conjuntos D y C entre los que se dá la correspondencia. En el primer ejemplo el conjunto D es el conjunto de personas y el conjunto C es el conjunto de fechas (día, mes y año). En el segundo ejemplo el conjunto D es el conjunto de libros y el conjunto C es un número entero (el número de páginas).

La suma, diferencia, producto y cociente de estas dos funciones están dados enseguida: La suma(f+g)(x)= 2 x2 + 3 x - 1 La diferencia (f-g)(x)= 2 x2 - 3 x - 9El producto(f g)(x)=(3 x + 4) (2 x2 -5) =6 x3 + 8 x2 - 15 x - 20 El cociente 2 x2 - 5(f/g)(x)= 3 x + 4


Las gráficas de la suma, diferencia, producto y cociente de funciones

Obtener la gráfica de la función suma es un proceso que se lleva a cabo a través de sumar alturas. Es decir el valor de f(x1) más el valor g(x1) dará el valor de (f + g)(x1). De igual forma con las operaciones diferencia, multiplicación y división, la gráfica se obtiene haciendo la operación correspondiente con alturas, tendrás que tener cuidado con la división cuando el denominador sea cero (x=-4/3 para este ejemplo).

Función compuesta
Dos funciones f y g pueden combinarse para formar una función compuesta, de las siguientes maneras:
La función compuesta recibe también el nombre de función. Resulta obvio entender que los valores g(x) deberán estar en el dominio de f para (fog), y que los valores f(x) deberán estar en el dominio de g para (gof ).
Utilizando las mismas funciones f y g de los ejemplos anteriores:
f(x)=2x2-5
g(x)=3x+4

(fog)(x)= 2(3x2 + 4) - 5

(f o g) (x) = f( g(x) )
(g o f ) (x) = g( f(x) )



Ejercicios
1) Encuentre f + g, f - g, fg y f/g:
a) f(x) = 3x2, g(x) = 4x3 b) f(x) = x / (x + 1), g(x) = 1 / x
2) Dadas las siguientes funciones, encuentre las combinaciones que se piden y
sus dominios:
f(x) = g(x) = 10 a) f / g b) (f o g)(x) c)(g o f)(x)
3) Halle f(g(0)), f(g(1/2)) y g(f(g(1))): a) f(x) = 2x - 2, g(x) = x2 + 1 b) f(x) = x2 + 1, g(x) = 2x4 - 4x2 + 3

Calculo Integral

El cálculo integral, también conocido como cálculo infinitesimal es una rama de las matemáticas en la cual se estudia el cálculo a partir del proceso de integración o anti derivación, es muy común en la ingeniería y en la matemática en general y se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.
Fue usado por primera vez por científicos como Arquímedes Descartes, Newton y Barrow, éste último fue el que junto con aportes de Newton, crearon el Teorema fundamental del cálculo integral que propone que la derivación y la integración son procesos inversos.

Teorema fundamental del cálculo =integral
El teorema fundamental del cálculo integral consiste (intuitivamente) en la afirmación de que la
derivación e integración de una función son operaciones inversas.
Esto significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las
matemáticas denominado análisis matemático o cálculo.
El cálculo integral se basa en el proceso inverso de la derivación, llamado integración. Dada una función f, se busca otra función F tal que su derivada es F′ = f; F es la integral, primitiva o antiderivada de f, lo que se escribe F(x) = ∫f(x)dx o simplemente F = ∫f dx (esta notación se explica más adelante). Las tablas de derivadas se pueden utilizar para la integración: como la derivada de x2 es 2x, la integral de 2x es x2. Si F es la integral de f, la forma más general de la integral de f es F + c, en donde c es una constante cualquiera llamada constante de integración; esto es debido a que la derivada de una constante es 0 por lo que (F + c)′ = F′ + c′ = f + 0 = f.
Por ejemplo,
∫2xdx = x2 + c.

Una consecuencia directa de este teorema es la
regla de Barrow, denominada en ocasiones segundo teorema fundamental del cálculo, y que permite calcular la integral de una función utilizando la antiderivada de la función al ser integrada.
Aunque los antiguos matemáticos griegos como
Arquímedes ya contaban con métodos aproximados para el cálculo de volúmenes, áreas y longitudes curvas, fue gracias a una idea originalmente desarrollada por el matemático inglés Isaac Barrow y los aportes de Isaac Newton y Gottfried Leibniz que este teorema pudo ser enunciado y demostrado.

En el desarrollo del concepto de función integrable de una función acotada definida en un intervalo acotado, aparecen los conceptos de integral superior e integral inferior de Riemann. La idea consiste en efectuar aproximaciones por exceso y por defecto utilizando los rectángulos exteriores e interiores a la curva, en función de una determinada partición del intervalo.
Para efectuar esta práctica vamos a cargar el fichero RIEMANN.MTH mediante la
secuencia de comandos Archivo-Leer-Utilidad, tal como se explicó en la primera parte sobre el manejo de ficheros con DERIVE.
Consideremos una función cualquiera, por ejemplo f(x)=x2, definida en el intervalo. Representemos esta función con Ventana-NuevaVentana2D-¡Representar!, o bien pulsando el botón en la ventana de Álgebra y nuevamente en la ventana 2D. Supongamos que efectuamos una partición del intervalo [0,2] en 4 subintervalos. Si deseamos dibujar los rectángulos inferiores, basta que editemos la expresión y la simplifiquemos



GRACIAS POR SU ATENCION Y ESPERO QUE EL CONTENIDO SEA DE UTILIDAD PARA LAS FUTURAS GENERACIONES Y SEA SASTIFACTORIO PARA EL AREA DE MATEMATICAS.
ATENTAMENTE:
GRISSEL CECILA RIVAS GUATZOZON

miércoles, 27 de mayo de 2009

Teoria Atomica




En física y química, la teoría atómica es una teoría de la naturaleza de la materia, que afirma que está compuesta por pequeñas partículas llamadas átomos, en contraposición a la creencia antigua de que la materia se podía dividir en cualquier cantidad arbitrariamente pequeña.


La teoria atomica es una teoría sobre la naturaleza de la materia. Según ésta, toda la
materia se compone de átomos.
Cada sustancia del universo, las piedras, el mar, nosotros mismos, los planetas y hasta
las estrellas más lejanas, están enteramente formada por pequeñas partículas llamadas
átomos.



Modelos Atomicos



Modelo Atomico de Dalton

Este primer odelo postulaba que:



•La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.
•Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias. Los átomos de los diferentes elementos tienen pesos diferentes.
•Los átomos permanecen sin división, aún cuando se combinen en las reacciones químicas.
•Los átomos, al combinarse para formar compuestos guardan relaciones simples.
•Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.
•Los compuestos químicos se forman al unirse átomos de dos o más elementos distintos.





Modelo de Thomson



Se determinó que la materia se componía de dos partes, una negativa y una positiva. La parte negativa estaba constituida por electrones, los cuales se encontraban según este modelo inmersos en una masa de carga positiva a manera de pasas en un pastel (de la analogía del inglés plum-pudding model) o uvas en gelatina. Posteriormente Jean Perrin propuso un modelo modificado a partir del de Thompson donde las "pasas" (electrones) se situaban en la parte exterior del "pastel" (la carga positiva).





Modelo de Rutherford




Representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico. Rutherford predijo la existencia del neutrón en el año 1920, por esa razón en el modelo anterior (Thomson), no se habla de éste.



Modelo de Bohr


“El átomo es un pequeño sistema solar con un núcleo en el centro y electrones moviéndose alrededor del núcleo en orbitas bien definidas.” Las orbitas están cuantizadas (los e- pueden estar solo en ciertas orbitas)
•Cada orbita tiene una energía asociada. La más externa es la de mayor energía.
•Los electrones no radian energía (luz) mientras permanezcan en orbitas estables.
•Los electrones pueden saltar de una a otra orbita. Si lo hace desde una de menor energía a una de mayor energía absorbe un cuanto de energía (una cantidad) igual a la diferencia de energía asociada a cada orbita. Si pasa de una de mayor a una de menor, pierde energía en forma de radiación (luz).




Modelo de Schrödinger



Densidad de probabilidad de ubicación de un electrón para los primeros niveles de energía.
En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, que es una extrapolación de la experiencia a nivel macroscópico hacia las diminutas dimensiones del átomo. En vez de esto, Schrödinger describe a los electrones por medio de una función de onda, el cuadrado de la cual representa la probabilidad de presencia en una región delimitada del espacio. Esta zona de probabilidad se conoce como orbital. La gráfica siguiente muestra los orbitales para los primeros niveles de energía disponibles en el átomo de hidrógeno y oxígeno.



Importancia de la Teoria Atomica



La importancia de esta teoría no puede ser exagerada. Se ha dicho (por ejemplo el premio Nobel Richard Feynman) que la teoría atómica es la teoría más importante en la historia de la ciencia. Esto se debe a las implicaciones que ha tenido, tanto para la ciencia básica como por las aplicaciones que se han derivado de ella.
Toda la química y bioquímica modernas se basan en la teoría de que la materia está compuesta de átomos de diferentes elementos, que no pueden transmutarse por métodos químicos. Por su parte, la química ha permitido el desarrollo de la industria farmacéutica, petroquímica, de abonos, el desarrollo de nuevos materiales, incluidos los semiconductores, y otros avances.




Mecanica Relativista




•La mecánica es la rama de la física que describe el movimiento de los cuerpos, y su evolución en el tiempo, bajo la acción de fuerzas.
•La mecánica es una ciencia física, ya que estudia fenómenos físicos. Sin embargo, mientras algunos la relacionan con las matemáticas, otros la relacionan con la ingeniería. Ambos puntos de vista se justifican parcialmente ya que, si bien la mecánica es la base para la mayoría de las ciencias de la ingeniería clásica, no tiene un carácter tan empírico como estas y, en cambio, por su rigor y razonamiento deductivo, se parece más a la matemática.
• El conjunto de disciplinas que abarca la mecánica convencional es muy amplio y es posible agruparlas en cuatro bloques principales:
Mecánica clásica
Mecánica cuántica
Mecánica relativista
Teoría cuántica de campos



La Mecánica relativista o Teoría de la Relatividad comprende:
La Teoría de la Relatividad Especial, que describe adecuadamente el comportamiento clásico de los cuerpos que se mueven a grandes velocidades en un espacio-tiempo plano (no-curvado).
La Teoría general de la relatividad, que generaliza la anterior describiendo el movimiento en espacios-tiempo curvados, además de englobar una teoría relativista de la gravitación que generaliza la teoría de la gravitación de Newton.





Mecanica Cuantica



•La Mecánica cuántica trata con sistemas mecánicos de pequeña escala o con energía muy pequeñas. En esos casos los supuestos de la mecánica clásica no son adecuados. En particular el principio de determinación por el cual la evolución de un sistema es determinista, ya que las ecuaciones para la función de onda de la mecánica cuántica no permiten predecir el estado del sistema después de una medida concreta, asunto conocido como problema de la medida.



Mecanica Cuantica Relativista



•La mecánica cuántica relativista trata de aunar mecánica relativista y mecánica cuántica, aunque el desarrollo de esta teoría lleva a la conclusión de que en un sistema cuántico relativista el número de partículas no se conserva y de hecho no puede hablarse de una mecánica de partículas, sino simplemente de una teoría cuántica de campos. Esta teoría logra aunar principios cuánticos y teoría de la relatividad especial (aunque no logra incorporar los principios de la relatividad general). Dentro de esta teoría, no se consideran ya estados de las partículas sino del espacio-tiempo. De hecho cada uno de los estados cuánticos posibles de un espacio-tiempo viene caracterizado por el número de partículas de cada tipo, representadas por campos cuánticos y las propiedades de dichos campos.





Teoria de la Relatividad


Con el nombre de Teoría de la Relatividad se engloban generalmente dos cuerpos de investigación en ciencias físicas, usualmente conectadas con las investigaciones del físico Albert Einstein: su Teoría de la Relatividad Especial y su Teoría de la Relatividad General.
La primera, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero se aproxima a ella en campos gravitatorios débiles. La teoría especial se reduce a la general en ausencia de campos gravitatorios.



Relatividad Especial


Esta teoría describe la física del movimiento en el marco de un espacio-tiempo plano y se usa básicamente para estudiar sistemas de referencia inerciales. Estos conceptos fueron presentados anteriormente por Poincaré y Lorentz, que son considerados también como originadores de la teoría.


Relatividad General



En 1915, Einstein desarrolló su teoría de la relatividad general, en la que consideraba objetos que se mueven de forma acelerada uno respecto a otro. Einstein desarrolló esta teoría para explicar contradicciones aparentes entre las leyes de la relatividad y la ley de la gravitación. Para resolver esos conflictos desarrolló un enfoque totalmente nuevo del concepto de gravedad, basado en el principio de equivalencia.






















domingo, 19 de abril de 2009

Termodinamica

La termodinámica es aquél de los campos de la física cuyo papel esencial es estudiar los cambios y transformaciones de un tipo de energía a otro. Es la aplicación práctica de un conocimiento científico; se toma, por ejemplo, calor, y se lo transforma en cualquier forma de trabajo que se desee.

Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura.


Con este concepto presente podemos decir que la Termodinámica es el estudio de las transformaciones e intercambios de la energía.

Dentro de la termodinamica se tienen tres leyes las cuales son: primera, segunda ley de la termodinamica y la ley cero. Despues de haber estudiado las tres leyes de la termodinamica estudiaremos el calor y la temperatura dentro de la termodinamica.


Primera Ley de la Termodinamica

Un sistema termodinámico posee una cierta energía que llamamos energía interna (U), debida a la propia constitución de la materia (enlaces de la moléculas, interacciones entre ellas, choques térmicos....). Por lo tanto, la energía total de un sistema es la suma de su energía interna, su energía potencial, su energía cinética, y la debida al hecho de encontrarse sometido a la acción de cualquier campo. (No obstante consideraremos sistemas sencillos que no se encuentran sometidos a ningún campo externo, ni siquiera el gravitatorio).
Puesto que la energía interna del sistema se debe a su propia naturaleza, a las partículas que lo constituyen y la interacción entre ellas, la energía interna es una propiedad extensiva del sistema. Sus unidades son unidades de energía, el Julio.
La energía interna de un sistema se puede modificar de varias maneras equivalentes, realizando un trabajo o transfiriendo energía en forma de calor.



Si variamos la energía interna de nuestro sistema, la primera ley de la termodinámica nos dice, que esta variación viene acompañada por la misma variación de energía, pero de signo contrario en los alrededores. De modo que la energía total del sistema más el entorno, permanece constante. La energía del Universo permanece constante. La energía ni se crea ni se destruye, sólo se transforma.
La forma de expresar esta ley, centrándonos en el estudio del sistema, es :


Q=∆U+W




La energía interna es una función de estado ; y como tal su variación solo depende del estado inicial y del estado final y no de la trayectoria o camino seguido para realizarlo.
Importante
La energía interna de un sistema es una función de estado, pero el calor y el trabajo no lo son. El calor y el trabajo desarrollados en un proceso son función de la trayectoria que siga el proceso. Calor y trabajo no son propiedades del sistema, son solo formas de modificar la energía del mismo.



Segunda Ley de la Termodinamica


La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.
En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinamica, que tiene dos enunciados equivalentes:
Enunciado de Kelvin - Planck : Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo.
Enunciado de Clausius: Es imposible construir una máquina cíclica cuyo único efecto sea la transferencia continua de energía de un objeto a otro de mayor temperatura sin la entrada de energía por trabajo.




Ley Cero de la Termodinámica


"Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".
Como consecuencia de esta ley se puede afirmar que dos objetos en equilibrio térmico entre sí están a la misma temperatura y que si tienen temperaturas diferentes, no se encuentran en equilibrio térmico entre sí.


Tercera Ley de la Termodinámica.

La tercera ley tiene varios enunciados equivalentes:
"No se puede llegar al cero absoluto mediante una serie finita de procesos"
Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.
"La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero".
"La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible".




Calor y Temperatura



Calor.- Fenómeno físico que eleva la temperatura y dilata, funde, volatiliza o descompone un cuerpo. El calor de un cuerpoes la suma de la energía cinética de todas sus moléculas.El tema calor constituye la rama de la Física que se ocupa de los movimientos de las moléculas, ya sean de un gas, un líquidoo un sólido. Al aplicar calor a un cuerpo, éste aumenta su energía. Pero existe una diferencia sustancial entre la energíatérmica que posee un cuerpo y su temperatura


Temperatura.- Grado de calor en los cuerpos. Para medir la temperatura, se utiliza el termómetro de mercurio, que consisteen un tubo estrecho de vidrio (llamado capilar), con el fondo ensanchado en una ampolla pequeña y el extremo superior cerrado.La ampolla o depósito y parte del capilar están llenos de mercurio y en la parte restante se ha hecho el vacío. Para leerla temperatura se utiliza una escala que está grabada en el vidrio.


Calor
El calor no lo podemos ver. Sólo podemos notar sus efectos. Notamos que el calor provoca cambios de temperatura yhace variarel tamaño de los objetos: con el calor los cuerpos se dilatan o cambian su estado físico. El calor provocaque los sólidospasen a líquidos y que los líquidos se transformen en gases.
El calor no es algo material, ya que si así fuera, un cuerpo al calentarse ganaría peso.El calor es una forma de energía que hace aumentar la temperatura. El calor se puede medir en joules (julios, J) quees launidad de energía en el Sistema Internacional, o en calorías (cal). Una caloría equivale a 4,16 joulesy se define como lacantidad de calor necesaria para que un gramo de agua aumente su temperatura en un grado centígrado (con másprecisión, paraque su temperatura pase de los 14,5°C a los 15,5°C).Como una caloría es una medida más pequeña se suele utilizar más la caloría grande (Cal)o kilocaloría (Kcal.) que equivalea 1.000 calorías. La mayoría de las tablas de calorías que encontramos habitualmente se refieren a estascalorías gran
deso kilocalorías.


Efectos del calor:


–El calor dilata los cuerpos: todos los cuerpos, cuando se calientan, aumentan de volumen;–El calor modifica los estados de la materia, convirtiendo los sólidos en líquidos y éstos en gases.Es importante observarque mientras se produce el cambio de estado no aumenta la temperatura del cuerpo;–El calor hace variar la temperatura.


Temperatura


La temperatura es una magnitud referida a las nociones comunes de calor o frío. Por lo general, un objeto más "caliente" tendrá una temperatura mayor. Físicamente es una magnitud escalar relacionada con la energía interna de un sistema termodinámico. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como "energía sensible", que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida que es mayor la energía sensible de un sistema se observa que esta más "caliente" es decir, que su temperatura es mayor.
En el caso de un sólido, los movimientos en cuestión resultan ser las
vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también).
El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.
Multitud de propiedades
fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólido, líquido, gaseoso, plasma), su volumen, la solubilidad, la presión de vapor, su color o la conductividad eléctrica. Así mismo es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas.
La temperatura se mide con
termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común el uso de la escala Celsius (antes llamada centígrada) y en los países anglosajones, la escala Fahrenheit. También existe la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escala Kelvin.